1. (d) Let
$$\alpha = 3$$
 and $\beta = -2$.

$$\alpha + \beta = 1$$
 and $\alpha\beta = -6$

Now,
$$p(x) = k\{x^2 - (\alpha + \beta)x + \alpha\beta\}$$

= $k\{x^2 - x - 6\}$

k is any real number.

2. (a) Intersecting points of
$$x = 0$$
 and $y = 0$ is $(0, 0)$ one solution

$$\angle M = \angle Q$$

 Δ MON ~ Δ QOP

 $\angle N = \angle P$

[Alternate interior angles]

Also, \angle MON = \angle POQ

[Vertically opposite angles]

[AAA similarity rule]

3K@CW

4. (*b*)

$$(\cos A - \sin A)^2 = 1^2$$

$$\Rightarrow$$
cos² A + sin² A - 2 sin A cos A = 1

$$\Rightarrow$$

$$1 - 2\sin A\cos A = 1$$

$$\Rightarrow$$

$$2 \sin A \cos A = 0$$

$$(\cos A + \sin A)^2 = \cos^2 A + \sin^2 A + 2 \sin A \cos A$$

= 1 + 0

$$\Rightarrow$$
 cos A + sin A = ± 1

5. (a)
$$\sec^2 \theta - 2 \tan^2 \theta = 0$$

$$\Rightarrow$$

$$sec^2 θ = 2 tan^2 θ$$

$$\rightarrow$$

$$1 + \tan^2 \theta = 2 \tan^2 \theta$$

$$\rightarrow$$

$$1 = \tan^2 \theta$$

$$\Rightarrow$$

$$\theta = 45^{\circ}$$

6. (d)
$$(a \times b)^n$$
 ends with the digit zero for every natural number n , that means it is divisible by 10. Hence, a and b must be multiples of 2 and 5.

$$0 \le \theta \le 90^{\circ}$$

$$0 \le \sin \theta \le 1$$

i.e. $\sin \theta > 1$ not possible

$$MP = PQ$$

$$NP = PQ$$

$$MN = MP + NP = 3 \text{ cm} + 3 \text{ cm} = 6 \text{ cm}$$

_ Mathematics—10__

9. (c) Length of arc =
$$\pi r \frac{\theta}{180^{\circ}}$$

= $\frac{22}{7} \times 10 \times \frac{45^{\circ}}{180^{\circ}}$
= $\frac{55}{7}$ cm

10. (d) Let
$$\alpha = \frac{2}{3} \text{ and } \beta = \frac{-1}{2}$$
Now,
$$\alpha + \beta = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$
and
$$\alpha\beta = \frac{2}{3} \times \left(\frac{-1}{2}\right) = \frac{-1}{3}$$

Required quadratic equation is,

$$x^{2} - (\alpha + \beta)x + \alpha\beta = 0$$
$$x^{2} - \frac{1}{6}x - \frac{1}{3} = 0$$
$$6x^{2} - x - 2 = 0$$

11. (*d*) PQ | BC, then

 \Rightarrow

 \Rightarrow

$$\frac{AP}{PB} = \frac{AQ}{QC} \text{ (BPT)}$$

$$\Rightarrow \frac{x}{4x+1} = \frac{x+3}{4x+14}$$

$$\Rightarrow x(4x+14) = (x+3)(4x+1)$$

$$\Rightarrow 4x^2 + 14x = 4x^2 + x + 12x + 3$$

$$\Rightarrow x = 3$$

12. (c) We have $\triangle ABC \sim \triangle DEF$; AB = 3DE; EF = 3 cm

Now,
$$\frac{AB}{DE} = \frac{BC}{EF}$$

 $\frac{3DE}{DE} = \frac{BC}{3} \implies BC = 9 \text{ cm}$

13. (c) Volume of water displaced = volume of sphere

$$= \frac{4}{3}\pi r^3$$

$$= \frac{4}{3} \times \frac{22}{7} \times 5.25 \times 5.25 \times 5.25$$

$$= 606.38 \text{ cm}^3$$

PK@CW

[Corresponding sides of similar Δ 's]

__ Mathematics—10_

14. (d) Diameter of sphere
$$(2r)$$
 = Diameter of cylinder $(2r)$ = Height of cylinder (h)

$$\frac{2r = h}{\text{CSA of cylinder}} = \frac{2\pi rh}{4\pi r^2} = \frac{2r}{2r} = \frac{1}{1}$$

Ratio = 1:1.

15. (a) If P(E) is probability of Rahul win the match, then
$$P(\overline{E})$$
 is the probability of Rahul not winning the match.

$$\therefore$$
 P(E) + P(\overline{E}) = 1 \Rightarrow 0.62 + P(\overline{E}) = 1 \Rightarrow P(\overline{E}) = 0.38

16. (c) Mode =
$$3 \text{ Median} - 2 \text{ Mean}$$
.

17. (d) Class interval
$$f$$
 cf
$$0-5 12 12 12 5-10 11 23 10-15 15 38 15-20 9 47 20-25 10 57$$

Now,
$$\frac{n}{2} = \frac{57}{2} = 28.5$$

So, median class = 10 - 15

$$\therefore$$
 Upper limit = 15

Let
$$AC : BC = k : 1$$

Now,
$$(x, y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$$

$$\Rightarrow \qquad (p, 4) = \left(\frac{9k+3}{k+1}, \frac{3k+5}{k+1}\right)$$

$$\therefore \frac{3k+5}{k+1} = 4$$

$$\Rightarrow \qquad 3k+5 = 4k+4 \Rightarrow k=1$$

Now,
$$p = \frac{9k+3}{k+1} = \frac{12}{2} = 6$$

19. (a) The given number is $\sqrt{3} + \sqrt{5}$.

 $\sqrt{3}$ and $\sqrt{5}$ both are irrational numbers because 3 and 5 are prime natural numbers and also $\sqrt{3}$ and $\sqrt{5}$ cannot be written in the form of $\frac{p}{q}$, where p is any integer and $q \neq 0$.

$$\therefore \sqrt{3} + \sqrt{5}$$
 is an irrational number

Hence, both assertion(A) and reason(R) are true and reason(R) is correct explanation of assertion(A).

_ Mathematics—10____

Distance formula =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

AB = $\sqrt{(6-3)^2 + (8-6)^2}$
= $\sqrt{9+4}$
= $\sqrt{13}$ units
AC = $\sqrt{(3-2)^2 + (6-12)^2}$
= $\sqrt{1+36}$
= $\sqrt{37}$ units
BC = $\sqrt{(6-2)^2 + (8-12)^2}$
= $\sqrt{16+16}$ = $\sqrt{32}$ units.

 \therefore AB \neq AC \neq BC

ΔABC is not an isosceles triangle because in isosceles triangle two sides are equal in lengths.

:. Assertion(A) is false but reason(R) is true.

$$2x + 5y = 10$$
 ...(i)
 $3x + 6y = 20$...(ii)

Now multiplying equation (i) by 3 and equation (ii) by 2 and subtracting equation (ii), from (i), we get

$$6x + 15y = 30$$

$$6x + 12y = 40$$

$$3y = -10$$

$$y = \frac{-10}{3}$$

Putting the value of y in equation (ii), we get

$$3x + 6\left(\frac{-10}{3}\right) = 20 \implies 3x = 40 \implies x = \frac{40}{3}$$

22.

 $\triangle ABC \sim \triangle PQR$ $\angle A = \angle P$

[Given]

[Corresponding angles of similar triangles]

>K@CW

:.

$$\angle P + \angle Q + \angle R = 180^{\circ}$$

$$\Rightarrow \qquad 69^{\circ} + 51^{\circ} + \angle R = 180^{\circ} \Rightarrow \angle R = 180^{\circ} - 120^{\circ}$$

$$\Rightarrow \qquad \angle R = 60^{\circ}$$

23.

LHS =
$$\frac{1 + \csc \theta}{\csc \theta}$$
$$= \frac{1 + \frac{1}{\sin \theta}}{\frac{1}{\sin \theta}}$$

__ Mathematics—10_

$$= \frac{\sin \theta + 1}{\sin \theta} \times \frac{\sin \theta}{1}$$

$$= \sin \theta + 1$$

$$RHS = \frac{\cos^2 \theta}{1 - \sin \theta}$$

$$= \frac{1^2 - \sin^2 \theta}{1 - \sin \theta}$$

$$= \frac{(1 - \sin \theta)(1 + \sin \theta)}{1 - \sin \theta}$$

$$= 1 + \sin \theta$$

$$LHS = RHS$$

: .

OR

LHS =
$$(1 - \sin \theta)(\sec \theta + \tan \theta)$$

= $(1 - \sin \theta)\left(\frac{1}{\cos \theta} + \frac{\sin \theta}{\cos \theta}\right)$
= $(1 - \sin \theta)\left(\frac{1 + \sin \theta}{\cos \theta}\right)$
= $\frac{1 - \sin^2 \theta}{\cos \theta}$
= $\frac{\cos^2 \theta}{\cos \theta}$
= $\cos \theta$ = RHS

:. LHS = RHS

:.

24. In
$$\triangle ABC$$
, $\angle ABC = 90^{\circ}$ [Given]
Now, $AB = 12 \text{ cm}$; $BC = 5 \text{ cm}$

 $AC^2 = AB^2 + BC^2$ [Pythagoras Theorem] Now, $= 12^2 + 5^2 = 169$

AC = 13 cm*:*.

Area of
$$\triangle ABC = \frac{1}{2} \times BC \times AB = \frac{1}{2} \times 12 \times 5 = 30 \text{ cm}^2$$

Also area of (
$$\triangle ABC$$
) = ar($\triangle AOB$) + ar($\triangle BOC$) + ar($\triangle AOC$)
= $\frac{1}{2} \times r \times AB + \frac{1}{2} \times r \times BC + \frac{1}{2} \times r \times AC$
= $\frac{1}{2}r(AB + BC + AC)$
= $\frac{1}{2}r(30)$
= $15r \text{ cm}^2$

 $15r = 30 \implies r = 2 \text{ cm}$

Area of segment
$$= \pi r^2 \frac{\theta}{360^{\circ}} - r^2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}$$
$$= r^2 \left[3.14 \times \frac{120^{\circ}}{360^{\circ}} - \sin 60^{\circ} \cos 60^{\circ} \right]$$
$$= 12 \times 12 \left[\frac{3.14}{3} - \frac{\sqrt{3}}{4} \right]$$
$$= 12 \times 12 \left[\frac{12.56 - 5.19}{12} \right]$$
$$= 12 \times 7.37 = 88.44 \text{ cm}^2$$

OR

Angle swept by minute hand in 10 minutes,
$$\theta = \frac{360^{\circ}}{60^{\circ}} \times 10 = 60^{\circ}$$

Area swept by minute hand in 10 minutes =
$$\pi r^2 \frac{\theta}{360^\circ}$$

= $3.14 \times 10 \times 10 \times \frac{60^\circ}{360^\circ}$
= $\frac{314}{6} = 52.33 \text{ cm}^2$

$$\sqrt{5} = \frac{a}{b}$$
, where a and b are co-prime integers and $q \neq o$.

$$\Rightarrow a = \sqrt{5}b$$

$$\Rightarrow a^2 = 5b^2$$

$$\therefore$$
 a^2 is divisible by 5.

So. a is also divisible by 5, Then

$$a = 5c$$
, where c is any integer.

$$\Rightarrow a^2 = 25c^2$$

$$b^2 = 5c^2$$

$$b^2$$
 is divisible by 5.

So, b is also divisible by 5.

That means, both a and b are divisible by 5, but a and b are co-prime. This contradiction arises due to our wrong assumption that $\sqrt{5}$ is a rational number.

 \therefore Hence, $\sqrt{5}$ is an irrational number.

$$\sin \theta = \frac{1}{\csc \theta} = \frac{1}{\sqrt{1 + \cot^2 \theta}}$$

$$\cos \theta = \frac{1}{\sec \theta} = \frac{1}{\sqrt{1 + \tan^2 \theta}} = \frac{\cot \theta}{\sqrt{1 + \cot^2 \theta}}$$

$$\tan \theta = \frac{1}{\cot \theta}$$

$$\sec \theta = \sqrt{1 + \tan^2 \theta} = \sqrt{\frac{\cot^2 \theta + 1}{\cot^2 \theta}}$$

$$= \sqrt{\frac{1 + \cot^2 \theta}{\cot \theta}}$$

$$\csc \theta = \sqrt{1 + \cot^2 \theta}$$

(Using (i))

$$-201x + 199y = -203 \qquad ...(ii)$$

Adding (i) and (ii), we get

$$-2x - 2y = -6$$

$$\Rightarrow$$

$$x + y = 3$$

...(iii)

Subtracting (ii) from (i), we get

$$400x - 400y = 400$$

$$\Rightarrow$$

29.

$$x - y = 1$$

...(iv)

...(i)

...(i)

On solving (iii) and (iv), we get

$$x = 2, y = 1$$

OR

Let unit's place be x and ten's place be y.

According to first condition

$$x + y = 12$$

2-digit number =
$$10y + x$$

According to second condition

$$(10y + x) - (10x + y) = 18$$

$$\Rightarrow 10y + x - 10x - y = 18$$

$$\Rightarrow \qquad \qquad 9y - 9x = 18$$

$$\Rightarrow$$
 $y-x=2$

$$\therefore \qquad x - y = -2$$

On Adding (i) and (ii), we get

$$x + y = 12$$

$$x - y = -2$$

$$\therefore \qquad 2x = 10$$

$$\Rightarrow \qquad \qquad x = 5$$

Putting the value of x in equation (i) we get

$$y = 7$$

Original number =
$$10y + x$$

$$= 10 \times 7 + 5 = 75$$

$$p(x) = 2x^2 - 5x + 3$$

Since α and β are zeroes of the polynomial then

Sum of zeroes,
$$(\alpha + \beta) = \frac{5}{2}$$
, product of zeroes, $(\alpha\beta) = \frac{3}{2}$

Sum of zeroes
$$= \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$
$$= \frac{(\alpha + \beta)^2 - 2\alpha\beta}{(\alpha\beta)^2}$$

(7)

$$= \frac{\frac{25}{4} - 3}{\frac{9}{4}}$$

$$= \frac{25 - 12}{4} \times \frac{4}{9} = \frac{13}{9}$$
Product of zeroes
$$= \frac{1}{\alpha^2} \times \frac{1}{\beta^2} = \frac{1}{(\alpha \beta)^2} = \frac{4}{9}$$
Polynomial is $f(x) = k \left\{ x^2 - \frac{13x}{9} + \frac{4}{9} \right\} = 9x^2 - 13x + 4$ (taking $k = 9$)

30. Let S be the sample space.

 $S = \{HHH, HHT, HTH, THH, TTT, TTH, THT, HTT\}$

(i) Number of outcomes having at least two tails = 4 E_1 : At least two tails

 $P(E_1) = \frac{\text{Number of outcomes having at least two tails}}{\text{Total number of outcomes}}$ $=\frac{4}{8}=\frac{1}{2}$

- *:*.
- (ii) E_2 : At most two heads Number of outcomes having at most two heads = 7

 $P(E_2) = \frac{\text{Number of outcomes having at most two heads}}{\text{Total number of outcomes}}$ ∴.

(iii) E_3 : Two heads

Number of outcomes having two heads = 3

 $P(E_3) = \frac{\text{Number of outcomes having two heads}}{\text{Total number of outcomes}}$ *:*.

31.

Given: A circle with centre O. AB is a tangent with point of contact P.

To prove: OP \perp AB.

Construction: Mark points P₁, P₂, P₃ ... on AB other than P and join with centre O.

Proof:

 $OP_1 > Radius$

 $OP_2 > Radius$

 $OP_3 > Radius$

OP = Radius

i.e. OP_1 , OP_2 , OP_3 , ... > OP

:. OP is the shortest path from O to AB and shortest path is always perpendicular.

Hence,

 $\mathsf{OP} \perp \mathsf{AB}$

Given: TP and TQ are two tangents to a circle with centre O with points of contact P and Q respectively.

To prove:

$$\angle PTQ = 2\angle OPQ$$

Proof: In $\triangle PTQ$,

$$TP = TQ$$

$$\therefore \qquad \angle TQP = \angle TPQ$$

Now,
$$\angle TPQ + \angle TQP + \angle PTQ = 180^{\circ}$$

$$\Rightarrow$$
 $\angle TPQ + \angle TPQ + \angle PTQ = 180^{\circ}$

$$\Rightarrow$$
 2 \angle TPQ + \angle PTQ = 180°

Now,

∠OPT = 90° [Tangent is perpendicular to radius drawn through point of contact] $\angle OPQ + \angle TPQ = 90^{\circ}$ ∴.

[Length of tangents from an external point]

[Angles opposite to equal sides of a triangle]

[Angle sum property of triangle]

 $[:: \angle TPQ = \angle TQP]$

$$\therefore \qquad \angle TPQ = 90^{\circ} - \angle OPQ \qquad \qquad \dots(ii)$$

Putting value of $\angle TPQ$ in equation (i), we get

$$2(90^{\circ} - \angle OPQ) + \angle PTQ = 180^{\circ}$$

$$\Rightarrow$$
 180° - 2 \angle OPQ + \angle PTQ = 180°

$$\therefore \qquad \angle PTQ = 2\angle OPQ \qquad \qquad \text{Hence proved.}$$

32.

Class interval	Frequency
0–10	5
10–20	13
20–30	x
30–40	22
40–50	30
50–60	y
Total	100

$$x + y + 70 = 100$$

$$x + y = 30$$

$$\text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$44 = 40 + \left(\frac{30 - 22}{2 \times 30 - 22 - y}\right) \times 10$$

$$4 = \frac{8}{38 - y} \times 10$$

$$5 = 152 - 4y = 80 \Rightarrow y = 18$$

$$x + 18 = 30$$

$$x + 18 = 30$$

$$x = 12$$

$$x = 12, y = 18$$
[Using (i)]

33. Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Given: $\triangle ABC$ in which DE | | BC, where D and E are the points on AB and AC respectively.

To prove:
$$\frac{AD}{DB} = \frac{AE}{EC}$$

Construction: Join BE and CD and Draw EM \perp AB and DN \perp AC.

Proof:
$$\frac{\text{Area of } \triangle ADE}{\text{Area of } \triangle DEB} = \frac{\frac{1}{2} \times \text{AD} \times \text{EM}}{\frac{1}{2} \times \text{DB} \times \text{EM}}$$

$$\therefore \frac{\text{ar } (\triangle ADE)}{\text{ar } (\triangle DEB)} = \frac{\text{AD}}{\text{DB}}$$

Similarly

$$\therefore \frac{\text{ar} (\Delta ADE)}{\text{ar} (\Delta DEC)} = \frac{AE}{EC}$$

Now,
$$\operatorname{ar}(\Delta DEB) = \operatorname{ar}(\Delta DEC)$$
 ...(iii)

...(iii) [Triangles on same base and between same | | lines]

...(ii)

...(i)

From equations (i), (ii) and (iii), we get

$$\frac{AD}{DB} = \frac{AE}{EC}$$

34. Volume of wood = Volume of cuboid
$$-4 \times \text{Volume of a conical depression}$$

= LBH - 4 ×
$$\frac{1}{3}\pi r^2 h$$

= 10 × 6 × 4 - 4 × $\frac{1}{3}$ × $\frac{22}{7}$ × 0.7 × 0.7 × 2
= 235.89 cm³

OR

Volume of water rise in cylinder = Volume of sphere

$$\Rightarrow \pi r^2 \times \text{ increase in water level} = \frac{4}{3} \pi R^3$$

$$\Rightarrow r^2 \times 4 \frac{4}{27} = \frac{4}{3} \times 7 \times 7 \times 7$$

$$\begin{cases} r = \text{ radius of sphere} \\ R = \text{ radius of cylinder} \end{cases}$$

 $_$ Mathematics—10 $_$

$$\Rightarrow r^{2} \times \frac{112}{27} = \frac{4 \times 7 \times 7 \times 7}{3}$$

$$\Rightarrow r^{2} = \frac{4}{3} \times \frac{7 \times 7 \times 7 \times 27}{112}$$

$$\Rightarrow r^{2} = 110.25$$

$$\Rightarrow r = 10.5 \text{ cm}$$

35. Let number of persons be x.

According to question,

$$\frac{12000}{x} - \frac{12000}{x+40} = 80$$

$$\Rightarrow \frac{12000(x+40-x)}{x(x+40)} = 80$$

$$\Rightarrow 12000 \times 40 = 80(x^2 + 40x)$$

$$x^2 + 40x = \frac{12000 \times 40}{80}$$

$$\Rightarrow x^2 + 40x - 6000 = 0$$

$$\Rightarrow x^2 + 100x - 60x - 6000 = 0$$

$$\Rightarrow (x + 100)(x - 60) = 0$$

$$\Rightarrow x = -100 \text{ (not possible)}, x = 60$$

Hence, initially number of persons = 60

OR

$$4x^{2} - 4a^{3}x + (a^{6} - b^{6}) = 0$$

$$\Rightarrow 4x^{2} - 2(a^{3} - b^{3})x - 2(a^{3} + b^{3})x + (a^{3} - b^{3})(a^{3} + b^{3}) = 0$$

$$\Rightarrow 2x[2x - (a^{3} - b^{3})] - (a^{3} + b^{3})[2x - (a^{3} - b^{3})] = 0$$

$$\Rightarrow [2x - (a^{3} - b^{3})][2x - (a^{3} + b^{3})] = 0$$

$$\Rightarrow x = \frac{a^{3} - b^{3}}{2} \text{ or } x = \frac{a^{3} + b^{3}}{2}$$

36. (*i*) Here,
$$a = 20$$
, $d = -1$

$$a_6 = a + 5d$$

= 20 + 5(-1)
= 20 - 5 = 15

Number of logs in 6th row = 15

(ii)
$$S_{n} = 200$$

$$\Rightarrow \frac{n}{2}[2a + (n-1)d] = 200$$

$$\Rightarrow \frac{n}{2}[2 \times 20 + (n-1)(-1)] = 200$$

$$\Rightarrow \frac{n}{2}[40 - n + 1] = 200$$

$$\Rightarrow n(41 - n) = 400$$

$$\therefore \Rightarrow n^{2} - 41n + 400 = 0$$

$$\Rightarrow n^{2} - 25n - 16n + 400 = 0$$

$$\Rightarrow (n - 15) (n - 16) = 0$$

_ Mathematics—10_

$$n = 25, n = 16$$
If $n = 25$, then
$$a_{25} = a + 24d$$

$$= 20 + 24(-1)$$

$$= -4 \text{ (not possible)}$$
If $n = 16$, then
$$a_{16} = 20 + 15d$$

$$= 20 - 15$$

$$a_{16} = 5$$
Hence, number of rows = 16
$$a_1 - a_{16} = 20 - 5$$

$$= 15$$

(iii)

OR

$$a_{10} - a_{14} = (a + 9d) - (a + 13d)$$

= $9d - 13d$
= $-4d = -4 \times (-1)$
= 4

37. Coordinates of 4 friends are: A (3, 4), B(6, 7), C(9, 4), D(6, 1).

(i)
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(6 - 3)^2 + (7 - 4)^2}$$

$$= \sqrt{9 + 9}$$

$$= \sqrt{18} \text{ units}$$

$$= 3\sqrt{2} \text{ units}$$

$$AD = \sqrt{(6 - 3)^2 + (1 - 4)^2} = \sqrt{9 + 9}$$

$$= 3\sqrt{2} \text{ units}$$
(ii)
$$BC = \sqrt{(9 - 6)^2 + (4 - 7)^2} = \sqrt{9 + 9} = 3\sqrt{2} \text{ units}$$

$$DC = \sqrt{(9 - 6)^2 + (4 - 1)^2} = \sqrt{9 + 9}$$

$$= 3\sqrt{2} \text{ units}$$
(iii)
$$AB = BC = CD = AD = 3\sqrt{2} \text{ units}$$
(iii)
$$AB = BC = CD = AD = 3\sqrt{2} \text{ units}$$
Diagonal
$$AC = \sqrt{(9 - 3)^2 + (4 - 4)^2} = \sqrt{36 + 0}$$

$$= 6 \text{ units}$$

$$BD = \sqrt{(6 - 6)^2 + (1 - 7)^2} = \sqrt{0 + 36}$$

$$= 6 \text{ units}$$

$$AC = BD$$

So, in \square ABCD, we have

 $AB = BC = CD = DA = 3\sqrt{2}$ units and AC = BD = 6 units.

Hence, ABCD is a square.

Diagonals of a square bisect each other.

A(3,4) O C(9,4) $O(x, y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $= \left(\frac{3 + 9}{2}, \frac{4 + 4}{2}\right)$ = (6, 4)

Hence, coordinates of point where diagonals of square intersect are (6, 4).

38.

(i) $\frac{AB}{BC} = \tan 60^{\circ}$ $\Rightarrow \frac{AB}{140} = \sqrt{3}$ $\Rightarrow AB = 140 \times 1.7 = 238 \text{ feet}$

. Mathematics—10_

In
$$\triangle ABC$$
, $\frac{AB}{BC} = \tan 60^{\circ}$
 $\Rightarrow AB = BC\sqrt{3}$...(i)

In $\triangle ABE$, $\frac{AB}{BE} = \tan 30^{\circ}$
 $\Rightarrow AB = \frac{BE}{\sqrt{3}}$...(ii)

 $\therefore \frac{BE}{\sqrt{3}} = BC\sqrt{3}$ [Using (i) and (ii)]

 $\Rightarrow BE = 3BC$
 $\Rightarrow BC + CE = 3BC$
 $CE = 2BC = 2 \times 140 \text{ feet} = 280 \text{ feet}$

Hence, length of shadow is increased by 280 feet.

OR

- (a) Height of a mountain can be determined with the help of trigonometry.
- (b) Width of a river can also be determined with the help of trigonometry.

