SOLUTIONS

- **1.** (c) HCF of 1152 and 1664 = 128
- $x^2 3x m(m+3) = 0$ **2.** (b) $x^{2} + mx - (m+3)x - m(m+3) = 0$ $\Rightarrow x(x+m) - (m+3)(x+m) = 0$ (x+m)[x-(m+3)] = 0x + m = 0 or x - (m + 3) = 0x = -mor x = m + 3
- The given polynomial is $f(x) = (x-2)^2 + 4$ f(x) = 0 $(x-2)^2 + 4 = 0$ for zeroes, \Rightarrow $(x-2)^2 = -4$ \Rightarrow

Which is not possible,

Hence this polynomial has no zeroes.

4. (a) The given equations are 2x - 3y = 1 and 3x - 2y = 4

Here
$$\frac{a_1}{a_2} = \frac{2}{3}, \frac{b_1}{b_2} = \frac{-3}{-2} = \frac{3}{2}$$

$$\Rightarrow \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

The given pair of linear equations has unique solution.

5. (c) Let coordinates of vertices be A(4, 0), B(-1, -1) and C(3, 5)

AB =
$$\sqrt{(-1-4)^2 + (-1-0)^2} = \sqrt{26}$$

BC = $\sqrt{(3+1)^2 + (5+1)^2} = \sqrt{52}$
AC = $\sqrt{(3-4)^2 + (5-0)^2} = \sqrt{26}$
Since, AB² + AC² = BC²

and AB = AC

Hence, triangle is an isosceles right-angled triangle.

6. (c) In $\triangle ABC$ and $\triangle DEF$ $\frac{AB}{DE} = \frac{BC}{DF}$

Also $\triangle ABC \sim \triangle EDF$

This is only possible when $\angle B = \angle D$.

7. (c) Given, $\tan \theta + \cot \theta = 2$

Let $\tan \theta = x$

$$\therefore x + \frac{1}{x} = 2 \Rightarrow x^2 - 2x + 1 = 0$$

On solving the quadratic equation,

$$x = 1 \Rightarrow \tan \theta = 1$$

$$\theta = 45^{\circ}$$

 \therefore The value of $\sin^3\theta + \cos^3\theta$

$$= (\sin 45^\circ)^3 + (\cos 45^\circ)^3$$
$$= \frac{1}{2\sqrt{2}} + \frac{1}{2\sqrt{2}} = \frac{1}{\sqrt{2}}.$$

8. (d) Let the y-axis divides in k:1.

Now, according to the question,

$$x = \frac{k \times (5) + 1 \times (-3)}{(k+1)}$$

$$\Rightarrow \qquad 0 = \frac{5k-3}{(k+1)} \Rightarrow 5k-3 = 0$$

$$\Rightarrow \qquad k = \frac{3}{5} = 3:5$$

9. (*d*) ∵ DE || BC

 \therefore $\angle ABC = 70^{\circ}$ (Corresponding angles) Using angle sum property of triangle in ΔABC ,

$$\angle ABC + \angle BCA + \angle BAC = 180^{\circ}$$

 $\Rightarrow \angle BCA = 180^{\circ} - 70^{\circ} - 50^{\circ} = 60^{\circ}.$

10. (a) DE || BC, if
$$\frac{AD}{DB} = \frac{AE}{EC}$$

$$\Rightarrow \frac{1.28}{2.56} = \frac{0.64}{EC}$$

 \Rightarrow EC =1.28 cm.

- 11. (c) Infinitely many.
- 12. (a) Let radius of the circle be r units Circumference of the circle = $2\pi r$, Area of the circle = πr^2

Circumference of the circle = Area of the circle

$$\Rightarrow$$

$$2\pi r = \pi r^2$$

$$\Rightarrow$$

$$r = 2$$
 units.

13. (b) Let radius of sphere be a cm

Surface area of sphere = $4\pi a^2$

$$\therefore 4 \times \pi a^2 = 616$$

$$\therefore 4 \times \frac{22}{7} \times a^2 = 616$$

$$\Rightarrow \qquad a^2 = \frac{616 \times 7}{22 \times 4} = 49$$

$$\Rightarrow$$
 $a = 7 \text{ cm}$

- **14.** (c) : Mean = assumed mean + $\frac{\sum f_i d_i}{\sum f_i}$: x = assumed mean.
- 15. (c) Circumference of smaller wheel = 30π cm Circumference of bigger wheel = 50π cm Now, $15 \times 50\pi$ = number of revolutions $\times 30\pi$

 \Rightarrow number of revolutions = 25

16. (c) Sum of 100 observations = $100 \times 49 = 4900$ Correct sum = 4900 - [40 + 20 + 50] + [60 + 70 + 80] = 5000

$$\therefore \text{ Correct mean} = \frac{5000}{100} = 50.$$

17. (c) Number of lottery tickets = 2000 Total number of prizes = 16

.. Probability that Abhinav wins a prize

$$=\frac{16}{2000}=\frac{1}{125}=0.008$$

18. (b) Here AB is tower of height h m.

Its shadow BC = $\sqrt{3} h$ m

Let θ be the angle of elevation

$$\therefore \text{ In ΔABC, } \tan \theta = \frac{AB}{BC} = \frac{h}{\sqrt{3}h} = \frac{1}{\sqrt{3}}$$

$$\tan \theta = \tan 30^{\circ}$$

$$\Rightarrow$$
 $\theta = 30^{\circ}$

- 19. (d) Assertion (A) is false but Reason (R) is true.
- 20. (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- 21. Let the cost of 1 book be $\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}} x$ and the cost of 1 pen be $\stackrel{?}{\stackrel{?}{\stackrel{?}{\stackrel{?}{$\sim}}}} y$.

According to question,

$$5x + 7y = 79$$
 ... (i)

7x + 5y = 77 ... (ii)

22. Given: In $\triangle ABC$, $\angle B = 90^{\circ}$ and in $\triangle AMP$, $\angle M = 90^{\circ}$

To prove: (i) $\triangle ABC \sim \triangle AMP$ and

(ii)
$$\frac{CA}{PA} = \frac{BC}{MP}$$

Proof:

(i) In \triangle ABC and \triangle AMP.

 $\angle ABC = \angle AMP$

(Each 90°)

$$\angle BAC = \angle MAP$$

(Common)
(AA similarity)

$$\therefore \qquad \Delta ABC \sim \Delta AMP$$
(ii) As $\Delta ABC \sim \Delta AMP$,

$$\therefore \frac{AC}{AR} = \frac{BC}{AR}$$

(Ratios of the corresponding sides of similar triangles)

$$\Rightarrow \frac{CA}{PA} = \frac{BC}{MP}$$

Hence proved.

23. In right-angled $\triangle OAP$,

$$OP^2 = OA^2 + AP^2$$

(Using Pythagoras Theorem)

$$\Rightarrow x^2 = (3.1)^2 + (6.2)^2$$

$$\Rightarrow x^2 = 9.61 + 38.44$$

$$\Rightarrow \qquad x^2 = 48.05$$

$$\Rightarrow$$
 $x = 6.93 \text{ cm}$

Given:

$$\therefore$$
 $\angle AOB + \angle AOC = 180^{\circ}$ (linear pair)

$$\angle AOB = 180^{\circ} - \angle AOC$$

= $180^{\circ} - 110^{\circ} = 70^{\circ}$

In
$$\triangle AOB$$
, $\angle OBA + \angle OAB + \angle AOB = 180^{\circ}$

$$\therefore 90^{\circ} + \angle OAB + 70^{\circ} = 180^{\circ}$$

$$\angle OAB = 180^{\circ} - 160^{\circ} = 20^{\circ}$$

24. Circumference of the circle = 44 cm

$$\Rightarrow$$
 $2\pi r = 44 \text{ cm}$

$$\Rightarrow \qquad r = \frac{44 \times 7}{2 \times 22} = 7 \text{ cm}$$

:. Area of the quadrant of a circle

$$= \frac{1}{4}\pi r^2 = \frac{1}{4} \times \frac{22}{7} \times 7 \times 7 = \frac{77}{2} \text{ cm}^2$$

25. Given,
$$\tan \theta = \frac{1}{\sqrt{3}}$$

As we know that $\tan 30^\circ = \frac{1}{\sqrt{3}}$

$$\Rightarrow$$
 $\theta = 30^{\circ}$

Putting $\theta = 30^{\circ}$ in $\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}$, we get

$$\frac{\csc^2 30^\circ - \sec^2 30^\circ}{\csc^2 30^\circ + \sec^2 30^\circ} = \frac{(2)^2 - \left(\frac{2}{\sqrt{3}}\right)^2}{(2)^2 + \left(\frac{2}{\sqrt{3}}\right)^2}$$

$$\frac{4 - \frac{4}{\sqrt{3}}}{(2)^2 + \left(\frac{2}{\sqrt{3}}\right)^2}$$

$$=\frac{4-\frac{4}{3}}{4+\frac{4}{3}}=\frac{8}{16}=\frac{1}{2}$$

OR

$$\sin(A - B) = \frac{1}{2} = \sin 30^{\circ}$$

$$\Rightarrow A - B = 30^{\circ} \qquad \dots(i)$$

$$\cos(A + B) = \frac{1}{2} = \cos 60^{\circ}$$

$$\Rightarrow A + B = 60^{\circ} \qquad \dots (ii)$$

Adding (i) and (ii), we get

$$2A = 90^{\circ} \Rightarrow A = 45^{\circ}$$

Putting the value of in (i), we get

$$45^{\circ} - B = 30^{\circ} \Rightarrow B = 15^{\circ}$$

26. Let $\sqrt{5}$ is a rational number and $\sqrt{5} = \frac{a}{b}$, where a and b are coprime and $b \neq 0$,

Now,
$$(\sqrt{5})^2 = \left(\frac{a}{b}\right)^2$$

 $\Rightarrow 5b^2 = a^2$...(i)

 \Rightarrow 5 is a factor of a^2

 \therefore a is also divisible by 5.

Let a = 5c, where c is some integer.

Substituting a = 5c in (i), we get

$$5b^2 = (5c)^2$$

$$5b^2 = 25c^2 \implies b^2 = 5c^2$$

$$\Rightarrow \qquad 5b = 25c \Rightarrow b$$

 \Rightarrow 5 is a factor of b^2

 \therefore 5 is a factor of b.

 \therefore 5 is a common factor of a and b

This contradicts the fact that a and b are coprime so, our assumption is wrong.

Hence, $\sqrt{5}$ is irrational.

27. Let the integer be x and its reciprocal be $\frac{1}{x}$. According to question,

$$x - \frac{1}{x} = \frac{143}{12}$$

$$\Rightarrow \frac{x^2 - 1}{x} = \frac{143}{12}$$

$$\Rightarrow 12x^2 - 12 = 143x$$

$$\Rightarrow 12x^2 - 143x - 12 = 0$$

\Rightarrow 12x^2 - 144x + x - 12 = 0

$$\Rightarrow 12x(x-12) + 1(x-12) = 0$$

$$\Rightarrow (x-12)(12x+1) = 0$$

$$\Rightarrow$$
 $x = 12$ or $x = -\frac{1}{12}$

Rejecting $x = -\frac{1}{12}$, because x is an integer.

$$\therefore$$
 $x = 12$

The required integer is 12.

OR

If the equation $x^2 + kx + 64 = 0$ has real roots, then $D \ge 0$.

$$\Rightarrow k^2 - 4 \times 1 \times 64 \ge 0$$

$$\Rightarrow \qquad k^2 \ge 256 \Rightarrow k^2 \ge (16)^2$$

$$\Rightarrow \qquad k \ge 230 \Rightarrow k = (10)$$

$$\Rightarrow \qquad k \ge 16 \quad [\because k > 0] \dots (i)$$

If the equation $x^2 - 8x + k = 0$ has real roots, then $D \ge 0$

$$\Rightarrow 64 - 4k \ge 0 \Rightarrow 4k \le 64$$

$$\Rightarrow k \le 16 \qquad \dots(ii)$$

From (i) and (ii), we get

$$k = 16$$
.

28. Let
$$p(x) = 4x^2 + 4x + 1$$

 α , β are zeroes of p(x)

$$\therefore \alpha + \beta = \text{sum of zeroes} = \frac{-b}{a}$$

$$\Rightarrow \alpha + \beta = \frac{-4}{4} = -1 \qquad ...(i)$$

Also
$$\alpha.\beta = \text{Product of zeroes} = \frac{c}{a}$$

 $\Rightarrow \qquad \alpha.\beta = \frac{1}{4} \qquad ...(ii)$

Now a quadratic polynomial whose zeroes are 2α and 2β .

$$x^{2} - (\text{sum of zeroes})x + \text{Product of zeroes}$$

$$= x^{2} - (2\alpha + 2\beta)x + 2\alpha \times 2\beta$$

$$= x^{2} - 2(\alpha + \beta)x + 4\alpha\beta$$

$$= x^{2} - 2 \times (-1)x + 4 \times \frac{1}{4}$$
[Using eq.(i) and (ii)]
$$= x^{2} + 2x + 1$$

29.
$$\tan (A + B) = \sqrt{3}$$

$$\Rightarrow \tan (A + B) = \tan 60^{\circ}$$

$$\Rightarrow A + B = 60^{\circ} \qquad ...(i)$$

$$\tan (A - B) = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \tan (A - B) = \tan 30^{\circ}$$

$$\Rightarrow A - B = 30^{\circ} \qquad \dots(ii)$$

Adding (i) and (ii), we get

$$2A = 90^{\circ}$$

$$\Rightarrow A = \frac{90^{\circ}}{2} = 45^{\circ}$$
From (i),
$$45^{\circ} + B = 60^{\circ}$$

$$\Rightarrow B = 60^{\circ} - 45^{\circ} = 15^{\circ}$$
Hence,
$$\angle A = 45^{\circ}, \angle B = 15^{\circ}$$

30. Given: A circle C(O, r). P is a point outside the circle and PA and PB are tangents to a circle.

To prove: PA = PB

Construction: Join OA, OB and OP.

Proof: In $\triangle OAP$ and $\triangle OBP$,

$$\angle OAP = \angle OBP = 90^{\circ}$$

(Radius is perpendicular to the tangent at the point of contact)

$$OP = OP$$
 (Common)

$$\triangle OAP \cong \triangle OBP$$
 (RHS congruence rule)

$$\Rightarrow$$
 PA = PB (CPCT)

Hence proved.

OR

Given: In an isosceles $\triangle ABC$, AB = AC, circumscribed a circle.

To prove: BD = DC

Proof: Here,
$$AB = AC$$

(Given)...(i)

...(iii)

$$AF = AE$$

(Tangents from an external point A to a circle are equal)

Subtracting (ii) from (i), we get

$$AB - AF = AC - AE$$

$$\Rightarrow BF = CE$$

Now,
$$BF = BD$$

(Tangents from an external point B to a circle are equal)

Also,
$$CE = CD$$

(Tangents from an external point C to a circle are equal)

$$\Rightarrow$$
 BD = CD

 \therefore BC is bisected at the point of contact.

Hence proved.

- 31. Total number of coins = 100 + 50 + 20 + 10= 180
 - (i) Number of 50p coins = 100
 - .. Probability of getting a 50p coin

$$=\frac{100}{180}=\frac{5}{9}$$

(ii) Number of $\stackrel{?}{\underset{?}{?}}$ 5 coins = 10 Number of coins other than $\stackrel{?}{\underset{?}{?}}$ 5 coins = 180 - 10 = 170 ∴ Probability of not getting a ₹ 5 coin $=\frac{170}{180}=\frac{17}{18}$

(iii) Number of ₹2 coins = 20 ∴ Probability of getting ₹ 2 coin

32. Let the speed of the train be x km/h

Distance travelled = 360 km

$$\therefore \qquad \text{Time taken} = \frac{360}{x} \text{ hours}$$

The speed of the train becomes (x + 5) km/h, if the speed had been 5 km/h more.

Distance = 360 km

$$\therefore \qquad \text{Time taken} = \frac{360}{x+5} \text{ hours}$$

According to question, $\frac{360}{x} = \frac{360}{x+5} + 1$

$$\Rightarrow \frac{360}{x} - \frac{360}{x+5} = 1$$

$$\Rightarrow \frac{360(x+5)-360x}{x(x+5)} = 1$$

$$\Rightarrow 1800 = x^2 + 5x$$

$$\Rightarrow \qquad x^2 + 5x - 1800 = 0$$

$$\Rightarrow x^2 + 45x - 40x - 1800 = 0$$

$$\Rightarrow \qquad (x+45)(x-40)=0$$

$$\Rightarrow x = -45 \text{ or } x = 40$$

Rejecting x = -45,

:. Speed of the train = 40 km/h

OR

Let the two numbers be x and x - 5.

According to question,

$$\frac{1}{x-5} - \frac{1}{x} = \frac{1}{10} \left(\text{Since } \frac{1}{x-5} > \frac{1}{x} \right)$$

$$\Rightarrow \frac{x-x+5}{(x-5)x} = \frac{1}{10}$$

$$\Rightarrow \qquad (x-5)x = 50$$

$$\Rightarrow \qquad x^2 - 5x - 50 = 0$$

$$\Rightarrow (x-10)(x+5)=0$$

$$\Rightarrow \qquad x = 10 \text{ or } x = -5$$

When
$$x = 10$$
, then $x - 5 = 10 - 5 = 5$

When
$$x = -5$$
, then $x - 5 = -5 - 5 = -10$

Thus, the required numbers are either 10 and 5 or - 5 and - 10.

33. Given: Diagonals AC and BD intersect at O.

To Prove:
$$\frac{OA}{OC} = \frac{OB}{OD}$$

Proof: In $\triangle AOB$ and $\triangle COD$

$$\angle 1 = \angle 2$$

$$\angle 3 = \angle 4$$
 [Alternate angles]

$$\therefore$$
 $\triangle AOB \sim \triangle COD$ [Alternate angles]

$$\Rightarrow \frac{OA}{OC} = \frac{OB}{OD}$$

[Corresponding sides of similar triangles]

34. Radius of cone = 60 cm

Height of cone = 120 cm

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

= $\frac{1}{3}\pi \times (60)^2 \times 120$
= $144000\pi \text{ cm}^3$

Radius of hemisphere = 60 cm

∴ Volume of hemisphere =
$$\frac{2}{3}\pi r^3 = \frac{2}{3}\pi \times (60)^3$$

= 144000π cm³

$$= 144000\pi \text{ cm}^3 + 144000\pi \text{ cm}^3$$

$$= 288000\pi \text{ cm}^3$$

Now, Volume of cylinder =
$$\pi r^2 h$$

= $\pi \times (60)^2 \times 180 = 648000\pi \text{ cm}^3$

JKGCV

Volume of water left in the cylinder= Volume of cylinder - Volume of solid

=
$$648000\pi \text{ cm}^3 - 288000\pi \text{ cm}^3$$

= $360000\pi \text{ cm}^3$
= $360000 \times \frac{22}{7} \text{ cm}^3$
= 1131428.57 cm^3
= $\frac{1131428.57}{1000}l = 1131.42 l$

₹ 24 is the cost for fencing 1 m of circular field.

₹ 5280 is the cost for fencing = $\frac{1}{24}$ × 5280 = 220 m of circular field.

Circumference of the field = 220 m

$$\Rightarrow 2\pi r = 220$$

$$\Rightarrow 2 \times \frac{22}{7} \times r = 220$$

$$\Rightarrow r = \frac{220 \times 7}{44} = 35 \text{ m}$$

∴ Area of the field = $\pi r^2 = \pi (35)^2 = 1225\pi \text{ m}^2$ Cost of ploughing = ₹ 0.50 per m² Total cost of ploughing the field

= ₹ 1225 π × 0.50 = ₹ 1925

35. Let A = 57, h = 3

Number of mineral water bottles	Number of boxes (f_i)	Class marks (x _i)	$u_i = \frac{x_i - A}{h}$	$f_i u_i$
49.5 - 52.5	20	51	-2	- 40
52.5 - 55.5	120	54	-1	- 120
55.5 - 58.5	105	57 = A	0	0
58.5 - 61.5	125	60	2000 - 1 x x x x x x x x x x x x x x x x x x	125
61.5 - 64.5	30	63	2	60
Total	n = 400	N. 2. 746 Suns	supplied the state of the state	$\Sigma f_i u_i = 25$

Here A = 57,
$$h = 3$$
, $n = 400$ and $\Sigma f_i u_i = 25$

By step-deviation method,

Mean,
$$\bar{x} = A + h \times \frac{1}{n} \times \Sigma f_i u_i = 57 + 3 \times \frac{1}{400} \times 25$$

= $57 + \frac{75}{400} = 57 + 0.1875 = 57.1875 \approx 57.19$ (approx.)

36. (i) Here O is mid point of of AC and BD.

By mid-point formula,

$$\frac{2+7}{2} = \frac{a+4}{2}$$

$$\Rightarrow \qquad \qquad 9 = a+4 \Rightarrow a=5$$
and
$$\frac{3+4}{2} = \frac{6+b}{2}$$

$$\Rightarrow \qquad \qquad 7 = 6+b \Rightarrow b=1$$

D(a, b) C(7, 4 A(2, 3) B(4, 6)

(ii), As we know that diagonals of a parallelogram bisect each other. Let fourth vertex of the parallelogram be (x, y).

By mid-point formula,

Now,
$$\frac{0+x}{2} = \frac{0+5}{2}$$

$$\Rightarrow \qquad x = 5$$
and
$$\frac{0+y}{2} = \frac{3+0}{2}$$

$$\Rightarrow \qquad y = 3$$

... Fourth vertex is (5, 3)

(iii), Using Pythagoras theorem in right-angled

As we know that diagonals of rectangle are equal.

∴ AB = OC
∴ AB =
$$\sqrt{(5-0)^2 + (0-3)^2}$$

= $\sqrt{25+9} = \sqrt{34}$

Hence $AB = OC = \sqrt{34}$ units

37. (i) Given,
$$a_6 = 16000$$

 $a + 5d = 16000$...(i)
 $a_9 = 22600$
 $a + 8d = 22600$...(ii)

From (i) and (ii), we get d = 2200

$$\therefore a + 5(2200) = 16000$$
$$a = 16000 - 11000 = 5000$$

(ii)
$$a_n = 29200$$

 $\Rightarrow 29200 = a + (n-1)d$
 $\Rightarrow 29200 = 5000 + (n-1)2200$
 $\Rightarrow \frac{24200}{2200} = n-1 \Rightarrow n = 12$

In 12th year the production of the company will be 29200.

(iii)
$$a_7 = a + 6d$$

$$a_4 = a + 3d$$

$$a_7 - a_4 = a + 6d - a - 3d$$

$$= 3d = 3 \times 2200 = 6600$$

OR

$$a_{12} - a = a + 11d - a = 11d$$

= 11 × 2200 = 24200

38. (i) Distance AP = Speed × Time = $\frac{720 \times 1000}{3600} \times 15 = 3000 \text{ m}$

(ii) Distance AP = Speed × time = $\frac{360 \times 1000}{3600} \times 15 = 1500 \text{ m}$

(iii) Let H be the constant height at which the jet is flyuing.

In ΔABQ

tan
$$60^{\circ} = \frac{AQ}{BQ}$$

$$\Rightarrow BQ = \frac{H}{\sqrt{3}}$$
In $\triangle PBD$ tan $30^{\circ} = \frac{PD}{BD}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{H}{BQ + QD}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{H}{\frac{H}{\sqrt{3}} + 3000}$$
(QD = AP)

$$\Rightarrow \left(\frac{H}{\sqrt{3}} + 3000\right) \frac{1}{\sqrt{3}} = H$$

$$\frac{H}{3} + \frac{3000}{\sqrt{3}} = H$$

$$H = \frac{3 \times 3000}{2\sqrt{3}}$$

$$= 1500\sqrt{3} \text{ m}$$

OR

In
$$\triangle ABQ = \tan 60^{\circ} = \frac{AQ}{BQ}$$

$$\Rightarrow BQ = \frac{AQ}{\sqrt{3}}$$

Now in $\triangle PBD$ tan $30^{\circ} = \frac{PD}{BD}$

$$\frac{1}{\sqrt{3}} = \frac{AQ}{BQ + QD} \quad (AQ = PD)$$

$$AQ = \frac{BQ + QD}{\sqrt{3}}$$

$$= \frac{AQ}{\sqrt{3} \times \sqrt{3}} + \frac{QD}{\sqrt{3}}$$

$$\Rightarrow \frac{2AQ}{3} = \frac{QD}{\sqrt{3}}$$

$$\Rightarrow AQ = \frac{3 \times 1500}{2 \times \sqrt{3}} = 750\sqrt{3} \text{ m}$$